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Abstract-Ad analytical solution of the unidirectional regenerator problem is presented. The effectiveness 
of a regenerator at any arbitrary distance from the inlet is defined in terms of dimensionless groups deter- 
mining the problem, computed for a wide range of parameters, and given in a series of graphs. While re- 
taining the limitation of equal heat capacities and constant heat-transfer coefficients for hot and cold gas 
streams, the analytical treatment differs from the conventional methods of attack in that: 

(1) No simplifying assumptions are made with regard to the material properties and dimensions of the 
heat storage matrix other than postulating that the thermal conductivity of the solid be zero in the direc- 
tion of gas flow. 
(2) No assumptions are needed regarding the nature of the longitudinal temperature profile along the 
regenerator. 

Local effectiveness graphs, which describe the operation of a unidirectional regenerator in cyclic 
operation, are of the type heretofore available only for ordinary recuperators. 

NOMENCLATURE 

A, 

;j, 

b, 
c, 

, 
CP, 

C 
P’ 

e, 

integration constant [equations (12), 
(13), (15)] ; heat-transfer area [equa- 
tions (24) to (26)] ; 
halfthickness of plate [ft] ; 
a convenience parameter, defined in 
equation (26) ; 
halfdistance between two plates [ft] ; 
amplitude of 7: defined by equation 

(19a); 
heat capacity of fluid [Btu/(ft3 degF)] ; 

heat capacity of fluid [Btu/(lb degF)] ; 
base of natural logarithms, also writ- 
ten exp; 

f,,f,,f:,f:, frequently recurring groups de- 
fined in terms of hyperbolic functions 
and trigonometric functions immedi- 
ately following equation (19a) ; 

G, mass velocity of fluid [lb/(h ft”)] ; 

go sm groups similar to the f,, f, described 
above, defined ibidem; 

h, surface (film) heat-transfer coefficient 
in Newtonian heating or cooling 
[Btu/(h ft’ degF)] ; 

20 561 

1 

i, j, 

k 

M, 

M*, 

NBi, 

$9 
Q ro/2 

R 

r’, 

s, 

s, 

imaginary unit, i = J( - 1) ; 
subscripts denoting sequences of inte- 
gers 1,2, 3, . . . ; 
thermal conductivity of plate [Btu/(h 
ft degF)] ; 
frequency parameter, dimensionless, 
M = &J/2) ; 
same, defined in terms of M: M* = 

M5; 
Biot number, dimensionless, NBi = 
haJk; 
a transform variable, s = q2 ; 
heat energy [Btu] ; 
quantity of energy absorbed or given 
up by the plate during half cycle 

[Btul ; 
a convenience parameter, R = (1 + 

V)MINBi ; 
radius of a contour of integration in 
the complex plane s ; 
a convenience parameter, defined in 
equation (20a) ; 
complex frequency (Laplace trans- 
form variable); 
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temperature ratio, t/t;; 
fluid temperature [“F] ; 
temperature of incoming hot stream 

[“Fl; 
temperature of incoming cold stream 

[“Fl; 
plate temperature referred to mean 
base temperature zero [degF] ; 
fluid temperature referred to mean 
base temperature zero [degF] ; 
maximum amplitude of fluid tempera- 
ture oscillation at entry to regenera- 
tor. It is equal to one half of the 
temperature difference between the 
incoming streams [degF] ; 
same as t, only at the surface of plate ; 
a convenience parameter, defined in 
equation (2Oa); 
fluid velocity [ft/h] ; 
distance along the direction of flow 

WI ; 
distance along the direction normal to 
the direction of flow [ft]. 

Greek symbols 
thermal diffusivity of the plate [ft”/h] ; 
a root of the equation B tan JI = 

NBil(1 + VI; 

a finite real number greater than zero: 
phase parameter, defined in equation 

Wa); 
t* evaluated at 5 = 1; 
phase parameter, defined in equation 
(26) ; 
“non-dimensional” time, 
[ = a(vz - x)/vu’; 
“non-dimensional” distance along the 
plate, 9 = xh/(c,bpu); 
temperature ratio t&b; 
thickness or depth ratio, 5 = y/u ; 
fluid density [lb/ft3] ; 
time [h]; 
length of total cycle [h) ; 
effectiveness, a dimensionless ratio. 
Its definition follows the statement of 
equation (26): 

w 
0’ 

frequency [h- ‘] ; 
modified frequency, dimensionless, 
0’ = oa’la. 

f; the bar over a letter denotes a Laplace- 
transformed function. Thus ,f(s) = 

“[ exp [-ST] j’(i) d[ for any function 

,ffor which this operation is defined. 

1. INTRODUCTION 

ALTHOUGH the principle of regenerative heat 
exchange is quite common, and regenerators have 
been built for many years, the underlying theory 
and accurate mathematical descriptions did not 
appear until the second and third decades of this 
century. 

In its earliest stages, the theory was highly 
approximative and utilitarian. Two main trends 
may be discerned in its development : on the one 
hand, in the industry concerned with the con- 
struction of high-temperature air preheaters. the 
temperature distribution in the direction of flow 
was usually assumed to be the same as in a 
recuperator operating under similar conditions, 
while the temperature distribution in the brick 
normal to the direction of flow was studied by 
postulating mean temperatures or making plaus- 
ible assumptions about the nature of such tem- 
perature profiles. The resulting solutions were 
semi-empirical, with constants taken from the 
wealth of experimental data obtained in building 
and operating blast furnace stoves and air pre- 
heaters for similar industrial applications. A 
good description of this approach is given by A. 
Schack [ 11. 

On the other hand, the designers of low-tem- 
perature regenerators to be used in liquefaction 
of air who worked with heat storage matrices 
made of thin strips of aluminum or steel postu- 
lated no thermal gradients in the material. They 
studied the temperature distribution along the 
regenerator without first assuming that it would 
be similar to that found in a comparable re- 
cuperator. 

Attempts were also made to obtain a general 
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mathematical description of regenerative heat 
transfer without assuming infinite conductivity 
of the matrix or prescribing a certain mean 
temperature distribution along the regenerator, 
but the absence of effective computing machinery 
made the solution of such descriptions im- 
practicable. Thus Schmeidler [2] wrote down a 
set of integral equations for the cyclic steady state 
of a regenerator and indicated an approximative 
solution in terms of mean temperatures. Acker- 
mann [3] presented a detailed theory of re- 
generators which, however, yields a solution for 
a given case only after repeated calculations 
which lead to a cyclic steady state. Lowan [4] 
offered a solution for a regenerator with cylindri- 
cal heat storage matrix. His solution requires 
repeated summing of several series in terms of 
Bessel functions of imaginary argument. The 
widely used textbook by Jakob [S] presents the 
set of partial differential equations and boundary 
conditions describing the problem in question 
with the remark that the analytical solution is 
difficult and with a brief reference to the work of 
Ackermann cited earlier. 

A comprehensive bibliography of the various 
attempts at solution of the regenerator problem 
is given by Hausen [6] (scattered in footnotes 
throughout the text). 

Finally, to conclude this introduction, a 
word about the relation of the present work to 
Hausen’s standard treatise on the subject. 
Hausen, whose exhaustive monograph [6] on 
recuperators and regenerators covers the state 
of the theory up to 1950, bases his method of 
solution on decomposing the cyclic temperature 
behavior of the gas into a base oscillation and the 
higher harmonics. The main oscillation is 
again assumed to correspond to the temperature 
distribution in a recuperator, while the higher 
harmonics describe the behavior of a purely 
regenerative nature. The method is used to 
treat both the unidirectional and the counter- 
current cases with many refinements of great 
practical significance. However, the fundamental 
assumption that the main oscillation of a re- 
generator is identical with the temperature dis- 

tribution along a recuperator imposes the re- 
quirement that time-mean temperatures be used, 
and special overall heat-transfer coefficients have 
to be defined. For actual calculations Hausen 
introduces a “heat-pole” method which entails 
considerable computational or graphical effort 
and which, therefore, is offered on several levels 
of complexity (and precision). 

By comparison, the solution offered below 
treats only the unidirectional case with the usual 
assumption of zero thermal conductivity in the 
solid matrix in the direction of flow, and retain- 
ing the limitation of equal heat capacities and 
constant heat-transfer coefficients for hot and 
cold gas streams. No other restrictions are 
placed on the thermal properties of the heat 
storage material or on its dimensions. The solid 
matrix is taken to consist of an array of parallel 
plates of finite thickness and length. The method 
of solution, however, could also be applied, 
with appropriate modifications, to a matrix 
consisting of cylindrical rods disposed in the 
direction of the fluid flow or to a matrix made up 
of spheres of finite thermal conductivity. The 
thermal properties of the fluid, its velocity, 
duration of the cycle, and regenerator length are 
arbitrary. 
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FIG. 1. Regenerator effectiveness, q = 0. 
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FIG. 2. Regenerator effectiveness, ? = 0.05. 

Because of the complexity of the final solution, 
and in order to make the results readily acces- 
sible for possible use, the solution was carried out 
in terms of convenient non-dimensional para- 
meters, calculated on an electronic computer 
for a wide range of these parameters, and pre- 
stented in graphical form on Figs. 1-6. 
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FIG. 3. Regenerator effectiveness. q = 0.1. 
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FIG. 4. Regenerator effectiveness, 9 = 0.3 

W 
204 W 

LL 

W 

FIG. 5. Regenerator effectiveness. 
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FIG. 6. Regenerator effectiveness. 

2. DISCUSSION OF THE PROBLEM 

AND SOLUTION 

Consider an array of parallel plates, each plate 
being 2a units thick and separated from the next 
plate by the distance of 2b units of length. Be- 
cause of symmetry, it is sufficient to consider one 
half of a plate extending in a Cartesian coordin- 
ate system from x = 0 to any desired length in 
the direction of positive x, and from y = 0 at 
the center of the plate to y = a at the surface of 
the plate. 

The plate is in contact with a well mixed layer 
of fluid of thickness 2b of which, again because of 
symmetry, only one half, b units thick, is con- 
sidered. The fluid enters at x = 0 at a temperature 
exp [ -iozl normalized about the average in- 
coming temperature, and at a constant mass flow 
rate, moving in the direction of positive x. As it 

proceeds along the plate, it exchanges the heat 
energy with the plate according to Newton’s 
[7] law of cooling and heating of bodies in air. 
The plate is assumed to have zero conductivity 
in the x-direction and finite conductivity, k, in 
the y-direction. 

The foregoing verbal description may be 
rendered analytically in dimensionless form as 
follows: in the plate 

ST a2T -=- 
al a52 

and in the fluid 

a0 
iiT/= -(O - T) 

with the boundary conditions 

dT 
z = N&e - T), <=l 

8 = exp [-io’i], r/=0 

aT 
ay = 0, (=O 

T = 0, g = 0. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Equations (1) and (2) may now be solved, sub- 
ject to conditions (3) through (6), using the Lap- 
lace transform. Let 

f(s) = [ exp [-sil_N’) di. 

Then equations (1) through (5) are, in terms of the 
transform variables, 

d’i- 
x = ST (7) 

do 
- -(e - T), 

&- 
4=1 (8) 

- 

z = IV,,@ - T), l=l (9) 

t&-L 
s + io’ 

Y/=0 (10) 

dT 
-= 
d5 ” 

5 = 0. (11) 
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Condition (6) has been incorporated into equa- whence 
tion (7). 

A solution of equations (7) and (11) is, for any 
q, with s = $, 

0 
A= 

(q/‘N,i) sinh 4 + cash 4 
(13) 

T = A cash 45. (12) 
If, now, the value of 0 from equation (13) is 

substituted into a solution of (8), and the condi- 

Condition (9) serves to determine A in equation 
tion (10) is applied, the result is 

(12): 0 _ - _Winhq 

NBi 

~q+;- 

s + icu’ 
(141 

n 
= Aq sinh 4 = N,i(Q - A cash 4). Elimination of 0 from equations (13) and (14) 

X <=l leads to 

I 

A = (S + LB’) {[(l + q)/N,i] 4 sinh 4 + cash 4) (15) 

and thus to solutions of equations (7) and (8). 

T = A cash q< (16) 

1 
g=--- AV 

s + ic;o' 
- Ar q sinh q 

Bi 
(17) 

where A is given by equation (15). 
The return from the complex frequency plane s to the domain of the variable c is effected by 

means of the inversion integral, 

y+im 

T=& 

i 

exp [SC] cash q< ds 

(S + b’) {[(l + q)/NBi] q sinh q i- cash 41 
(18) 

y--i& 

which may be evaluated using residue theory. In particular, the only residue of interest is that due to 
the simple pole s = -iw’ in the complex s-plane. The residues at the poles of the expression 
{[(I + rl)/NBi] q sinh q + cash q} -' contribute only to the transient part of the solution, which is 
of limited interest in actual operation of a regenerator and will not be discussed here. It is easily 
seen that they contribute nothing to the cyclic steady-state part of the solution. Indeed, setting the 
expression inside the square brackets equal to zero, one obtains the transcendental equation 
q tanh q = - N,i/(l + I?) or, for a complex q = ip, /? tan /? = NJ(1 + q). The roots of this equation, 
written in terms of s = q2, i.e. -pi” for i = 1,2,3, . . . , provide the damping factor, exp [ - pfc], which 
tends to zero as steady state is approached and c grows large. 

The simple pole s = -io’ lies inside the contour delimited by the straight line s = y, where y 
is any real positive number, and that portion of the circle of radius r, (r + co) with the origin as 
center, which is to the left of this line. The theory of residues [S] applies, with the result that 

T = lim 
exp [si] cash J(sc) 

S --) -iw’ (S + in’) ([(1 + q)/‘N,i] (Js) sinh (Js) + cash (Js)] 

exp [ -iw’c] cash [J(o’/2) (i - l)c] 

[(l + q)lNBi] (j - 1) J(o'/2) sinh [J(o’/2) (i - l)] + cash [(i - 1) J(cu’/2)] ‘19) 
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where ,/( - 0’) = (i - l)J(w’/2). 

Applying the inversion integral to equation (17) and using the theory of residues provides the 
value of 

8 = exp [ - if3’[] 

’ 

q(i - 1) J(w’/2) sinh [(i - 1) ,/(0’/2)] 

- (1 + q) (i - 1) ,/(0’/2) sinh [(i - 1) J(o’/~)] + N,i cash [(i - 1) 4(0’/2)] 1 (20) 

After a series of elementary transformations and simplifications, which have been relegated to 
Appendix 1, and upon taking the real parts of the final results, equations (19) and (20) become, 
respectively, (19a) and (20a) : 

where 

T = c cos (0’5 + t*) (194 

cosh2 M* - sin’ M* 1 
f 

2R2(sinh2 M + sin’ M) + 2R[f,(g, - gJ + f,(g, + g,)] + cosh2 M - sin2 M 

L* = arctanf:Cms - SC) + .&I - fXR(gs + SC) + Ll 
fi’Wg, - sc) + _Cl + f f [Nss + d + fil 

and 

R = (1 + q)M/‘Nsi ; f, = cash M cos M 

f, = sinh M sin M 

M = &J/2) = ,/(oa2/2a) = ,/(rca2/azo); g, = cash M sin M 

gs = sinh M cos M 

M* = 5&Y/2) = ,/(oy2/2u); f: = cash M* cos M* 

f: = sinh M* sin M* 

8 = J(S” + U2) cos (0’~ + arctan U/S) (20a) 

U= 
-rM(sinh M cash M + sin M cos M) 

N,i[(l + 2R2) sinh’ M - - 2R2) M + 1 + 2R(sinh M cash M - sin M cos M)] 

S=l+U 
2R(sinh2 M + sin’ M) + (sinh M cash M - sin M cos M) 

sinh M cash M + sin M cos M 

Equation (19a) describes the thermal response anywhere in a plate exposed to a fluid which enters 
at x = 0 at the temperature exp [ - ioz] and moves along the plate. The fluid, in turn, behaves 
according to equation (20a) as it exchanges its energy with the plate in its progress in the direction 
of the increasing x. Taken together, these two equations describe the energy transfer from the hot 
fluid to the cold fluid in a cyclic steady operation of a unidirectional regenerator. It is difficult, 
however, to envisage a regenerator “driven” by a fluid which enters the heat storage matrix with the 
time-temperature behavior of a perfect sine wave. A regenerator is more likely to be operated by 
alternating the incoming streams in an on-off manner of a square wave. A solution corresponding 
to such input is obtained by performing a harmonic analysis of the desired arbitrary fluctuation, 
calculating the temperatures T and 0 for each harmonic of the resulting series, and summing. 
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In the subsequent analysis the square waveform will be taken to extend from + 1 (entering hot 
stream, first half of the cycle) to - 1 (entering cold stream, second half of the same cycle). The actual 
fluid temperature, T,, is then recovered, provided the temperature of the incoming hot stream, T,,, 
the temperature of the incoming cold stream, T,, and the solution 0 are known : 

6,= 
2T,--T,-T, 

G-T, (21) 

Decomposing the square wave in the usual manner (Fourier [93, p. 143) and summing the har- 
monic components one obtains the plate temperature 

;c 

72 c c. 
7c 

J sin (wJi + cj) 
2j - 1 

i=l 

and the fluid temperature 
I 

02 c J(Sj” + uj”, u. 
71 Z2j - 1 

sin wi[ + arctan 2 ( sj 
j= 1 

> 

(22) 

(23) 

with the coefficients Cj, Sj, and Uj written in terms of the component parameters Mj = J[(2j- 
l)u’/2] = ,/(0.$/2) and Rj = (1 -t q)Mj/NBi. 

It should be noted that equations (22) and (23) could have been obtained in a more direct manner 
by writing the Laplace transform of a square wave? into the right-hand side of equation (10) and 
repeating the development which led to equations (19a) and (20a). However, the method followed 
here of obtaining the response to a harmonic excitation first and synthesizing afterwards affords 
greater flexibility. It presents the building blocks from which a solution to a problem involving an 
arbitrary forcing function may be constructed with comparative ease. 

3. INTERPRETING THE SOLUTIONS AND USING THEM 

Although equations (22) and (23) may be used to gain some insight into the interrelated tempera- 
ture fields of the gas and the solid and their dependence on time and space, their importance to the 
designer of a regenerative system is secondary. Of more interest to the designer is the problem of 
effective utilization of energy and of optimum use of the heat storage material. In order to provide 
an answer to this problem, it is necessary to calculate the quantity of heat alternately stored in and 
delivered by the heat storage matrix at any given point along the regenerator. This may be done by 
calculating the heat transferred from the gas to the surface of the plate : 

dQ = hA(B - T)t$ dz (24) 

where dQ is the quantity of heat transferred during the time interval dz, and T is evaluated at the 
surface of the plate. Integrating over a half cycle, we obtain 

rol2 WI2 
Q ro,2 = hAt;( 1 8 dz - j T dr) (25) 

0 0 

Integration over the total cycle would serve no useful purpose since a cyclic steady state is presumed 
to exist and the integral of dQ for the whole period is equal to zero. On performing the operations 
indicated in equation (25) on the expressions for 8 and T given in equations (22) and (23) and simpli- 
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fyingl_ the following expression for the quantity of heat entering or leaving the plate at any position 
x during a half period is obtained : 

where 

and 
Bj = J(S” + U’) 

Eg, j = arctan (Uj/Sj). 

The group hAt&,/2 represents an ideal amount of heat which would be exchanged if the temperature 
of cold stream could be raised to the entrance temperature of the hot stream. The remaining factor 
in equation (26) is the local effectiveness of any position in a unidirectional regenerator. It will be 
denoted by the Greek letter Y. Thus, equation (26) becomes 

Q q)/2 

hAt;z, y 
= ____ 2 

The use of a local effectiveness Y as a measure of the operational efliciency of a regenerator 
represents a departure from the more general definition (e.g. Jakob [S], p. 268) which sought to re- 
late the efficiencies of regenerators and recuperators. The purpose of the present paper is more 
direct : to provide the designer of a unidirectional regenerator with the effectiveness of the system 
at any dimensionless length q. The results are given on Figs. 1-6, where Y is plotted against the 
frequency parameter M for a variety of Biot numbers. Each figure represents a different value of the 
distance parameter xh/c,bpv in an increasing sequence from 0 to 10. The sequence is sufficiently 
dense, so that linear interpolation from figure to figure is possible. The results may be read with an 
accuracy of one or two per cent which is thought to be sufficient in the light of our imperfect know- 
ledge of the thermal properties of the gas stream, of the solid matrix, and of the film coefficient h. 

The ratio x/v which is used in the formulation of the distance parameter xh/c,bpv also appears in 
the definition of dimensionless time, and in the arguments of the trigonometric functions in equation 
(26), where it is divided by 2,/2. Although it represents but a negligible fraction of the total period 
on the wide range covered by Figs. 1-6, it was carried in the development and retained in equation 
(26). In numerical applications, several values of the ratio x/(vT,,) were tried and the results compared. 
At high frequency numbers (M = 5), the values of Y were found to be lower by less than 0.005 for 
x/(vz,) = 0.01 than the corresponding results for X/(Q) = OQOl. The agreement at low frequency 
numbers was within the computational accuracy. Figures l-6 were plotted from the results computed 
for ratios x/(vzO) = OWOl and x/(vzO) = 0401, but the scale is such that the effect of the parameter 
x/(vz,,) cannot be seen in any case. 
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APPENDIX 1 

Reduction of Complex Solutions (19) and (20) to their Real Parts [Equations (19a) and (20a)] 
Equation (19) was written : 

exp [ - io’5] cash [4(0’/2) (i - l)<] ___~ 
T = [(l + V)/N&I (i - 1) J(o’/2) sinh [4(0’/2) (i - l)] + cash [J(o’/2) (i - 1 )] 

Using the identities 

sinh (a - ib) = sinh a cos b - i cash a sin b 

cash (a - ib) = cash a cos b - i sinh a sin b 

and the variablesf,,f,, gc, gS defined in the text immediately following equation (19a), equation (19) 
may be written 

exp [ - iw’i] cf: - iff) 

* = CC1 + ~)/NBilM[(Lls -- SC) - 4s + SC)1 + L - if, 

exp [ -io’[] cf,* - iff) 

= R(g, - gJ + f, - iCR(g, + gJ + f,]’ 

Furthermore, let E = R(g, - gJ + f, and F = R(g, + gJ + f, and also C* = f,*E + f:F, 
D* = f fE - f ,*F. Then 

T = exp [ -io’~] (C* - iD*) 

E2 + F2 ’ 

From the definition of E and F and upon squaring, 

E2 + F2 = 2R2(sinh2 M + sin’ M) + 2R[f,(g, - gJ + f,(g, + g,)] + cash’ M - sin2 M 

while the real part of the numerator is C* cos w’i - D* sin o’[. 

An application of the trigonometric identity 

C* cos w’[ - D* sin w’[ = J(C*2 + D*2) cos [w’c + tan-‘(D*/C*)] 

leads to 

T = &*2 + D*2) cos @,J( + c*). 

E2 + F2 

But C*2 + D*2 = (E2 + F2) (f:2 + f f2) from the definition of C* and D* and upon squaring. 
Therefore 

T = dE2 + F2) cfT2 + f ,*‘)] cos (,$c + @) 
E2 + F2 

M< - sin2 Ml 
zz 

E2 + F2 > 
cos (o’[ + t*) 

where c* = tan ’ (0*/C*), and where the definition off :, f $ has been used. In order to obtain the 
final form of equation (19a), the variables E2, F2. C* and D*, which were introduced for convenience, 
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are written out in full. This results in T = C cos (w’i + t*) with 

cash’ M* - sin2 M* ’ = 
and 

1 
t 

M $ sin2 M) + 2R[f,(g, - gJ + fs(g, + g,)] + cosh2 M - sin2 M 

t* = arctan f,*EWs - gc) + .Ll - f:[Ngs + sc) + f,l 
fXRk~s - sc) + f,l + .fflWs + cd + f,l 

which enters into equation (19a). 
Equation (20) was written 

0 = exp [I-io’c] 1 
?(i - 1) JW/2) sinh [(i - 1) J(o’/2)] 

- 1 (1 + q) (i - 1) ,/(0’/2) sinh [(i - 1) J(o’/~)] + N,i cash [(i - 1) J(o’/2)] ’ 
Using the definitions and identities given earlier in this Appendix, 8 is transformed into 

8 = exp [-io’[] 
qM[(g, - g,) - i(g, + s,)] 

(1 + rl)M[(g, - sJ - i(g, + s,)] + N,,(f, - 1 if,) 

Let g, - gc = J, gs + gc = K, (1 + q)MJ + N,if, = X, and (1 + v)MK + Nsifs = x so that 

8 = exp[-iw’[] 
qM(J - iK) 

x _ iy 1 = exp[-icu’l;] 
qM[(JX + KY) + (JY - KX)i] 

x2 + Y2 1 
and 

. . 
e = cos w’( - I sm w’[ - x2 VM (( + y2 cos o’i - i sin w’i) [JX + KY + i(JY - KX)]). 

Taking only the real part of 8 (which was its original definition as a certain temperature ratio), 
it becomes 

VM 
8 = cos di - x2 + y2 [(JX + KY) cos w’i + (JY - KX) sin o’c] 

= l_tlM(JX+KY) 
[ x2 + Y2 1 

cos 0’5 - 
qM(JY - KX) 

x2 + Y2 
sin w’i 

= S cos o’[ - U sin w’[ = J(S’ + U2) cos [w’[ + tan-’ (U/S)]. 

The final expression is equation (20a). The convenience parameters written out in detail are 

JX + KY = N,,[2R(sinh2 M + sin’ M) + (sinh M cash M - sin M cos M)] 

JY - KX = -N,,(sinh M cash M + sin M cos M). 

These, in turn. lead to the expressions for S and U : 

S=l- 
yM[2R(sinh2 M + sin’ M) + (sinh M cash M - sin M cos M)] 

N,i[(l + 2R2) sinh2 M - (1 - 2R2) sin2 M + 1 + 2R(sinh M cash M - sin M cos M)] 

lJ= - yM(sinh M cash M + sin M cos M) 

N,i[(l + 2R2) sinh2 M - (1 - 2R2) sin2 M + 1 + 2R(sinh M cash M - sin M cos M)] 
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which completes the development of equation (20a). 

APPENDIX 2 

Integration qf the Energy Equation 

The integration is to be performed on the known functions of time, the function 0 as given in 
equation (23), and the function T given in equation (22) and evaluated at 4’ = a, i.e. at < = 1. 
Before proceeding, dimensionless time i is converted to the real time, T, and equation (2.5) becomes 

- B.cos 
J 

The coefficients Bj and Cj may be collected using the identity 

m + 2n 
cos(m + n) - cosn = -2sin-------sm 

2 

leading to the following form of the expression for QroiZ : 

Further simplification is achieved by noting that sin [(2j - 1)7c/2 + cjl = - [( - l)j+ ‘1 cos I j. 
This leads directly to equation (26) : 

Q rol2 
j= 1 

A special case of interest in many applications follows from the foregoing by noting that in the 
limit as x + 0 and tg. j --f 0, Bj + 1. 

This represents an infinitely short regenerator, or a regenerator in which the amount of energy 
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carried by the fluid streams is so large compared to the heat capacity of the solid that the attenuation 
of the stream temperature potential is negligible. The effectiveness of such regenerator is shown on 
Fig. 1. It indicates the extent to which the heat storage in the solid is dependent on the capability of 
the solid to absorb the energy supplied by an “inexhaustible” reservoir. 

RthmGUne solution analytique du probltme du regenirateur unidirectionnel est presentee. L’efftcaciti 
d’un regtntrateur a n’importe quelle distance arbitraire de I’entree est dtiinie en fonction de groupes sans 
dimensions qui regissent le probltme, calcul&e pour une large gamme de paramttres et donnee a l-aide 
d’une serie de graphiques. Bien qu’il tienne compte de l’hypothese restrictive de l’egalite des capacites 
thermiques et de la Constance des coefftcients de transport de chaleur pour des Ccoulements de gaz chaud 
et froid, le calcul theorique diffire des mtthodes classiques de calcul en ce que : 

(1) Acune hypothtse simplificatrice n’a tte faite au sujet des proprietes du materiau et des dimensions 
de la matrice pdreuse, en dehoes de celle qui suppose que la conductivite thermique du solide est nulle 
dans le direction de l’tcoulement gazeux. 
(2) On n’a besoin d’aucune hypothtse sur la nature du protil longitudinal de temperature le long du 
rtgenerateur. 
Les graphiques d’efficacite locale, qui dtcrivent le fonctionnement cyclique d’un rtgenerateur uni- 
directionnel, sont d’un type disponible jusqu’a present seulement pour des rtcuptrateurs ordinaires. 

Zusammenfassung-Es wird eine analytische Losung des Gleichstromregeneratorproblems gegeben. Die 
Wirksamkeit eines Regenerators in beliebigem Abstand vom Einlass ist in Form dimensionsloser, das 
Problem bestimmender Gruppen definiert, die fur einen grossen Parameterbereich berechnet und in 
einer Reihe von Diagrammen angegeben sind. Wahrend einschrlnkend gleiche Warmekapazitaten und 
konstante Warmetibergangskoeffizienten fur den heissen und kalten Gasstrom beibehalten werden, 

unterscheidet sich die analytische Behandlung von den konventionellen Methoden darin, dass: 
(1) kein vereinfachenden Annahmen hinsichtlich der Materialeigenschafter und Dimensionen der 
Warmespeichermasse gemacht sind ausser der Forderung, dass die Wlrmeleitfihigkeit in Richtung 
des Gasstroms Null ist ; 
(2) keine Annahmen iiber die Natur des Ltingstemperaturprofils im Regenerator notwendig sind. 
Grtliche Wirksamkeitsdiagramme, welche die Arbeitsweise des Gleichstromregenerators bei zyklischer 

Beaufschlagung angeben, sind von der Art, wie sie bisher nur fiir gewahnliche Rekuperatoren zur Verfiigung 
standen. 

AaaoTaqHsI-_AaHo TeopeTwecKoe peueHne aaAas&i AJIIR ~~HMOTO~HO~O pereaepaTopa. 
~03~@IK~HeHT pereHepa4HH Ha JIIO60M npOH3BOJIbHOM paCCTOFiHN4 OT BXOAa npeACTaBJIeH 

6eapaaMepHuMa rpynnawi, 0npenenRIolqaMH aanaqy, KoTopbIe paccwiTaHbI gnu l~~lpo~oro 

~Uana3OHanapaMeTpOBn~~BO~RTCRBp~~erp~~~KOB.BTOBpeMRKaKCOXpaHReTCR yCnOBUe 

paBHOCTEI TenJIOeMKOCTefi H nOCTORHCTBa KO3$#AL(MeHTOB TennOO6MeHa AJIR nOTOKOB rOpR- 

gero EI xonoaHor0 ra38, TeopeTsirecKW aKansi3 0wnwaeTcH 0T 06b1’1~bxx MeTonoB mxneno- 
BaHMR TeM,qTO: 

(1) He npHHHMaIOTCX ynpoaaIOlqHe npe~noJIO%eHIiH OTHOCllTenbHO CBOtiCTB MaTepIlaJra 

H pa3MepOB TenJIOaKKyMyJIHpyIO~et Ha6IIBKH 3a BCKJIIO9eHPfeM HyJIeBOft TenJXOnpOBOAHOCTIl 

Tsepgoro TejIa B HanpasneHw Teveww raaa; 

(2) He Tpe6yeTCR AonyqeHw 0 npHpoRe npofionbHor0 npo+inrr TeMnepaTypM Bnonb 

TenJl006MeHHHKa. 

rpa@HKH JIOKaJIbHbIX KO3$&I~l5eHTOB pereHepaqaa,OnHCnBaloIllwX ~MKJWleCKyIO pa6oTy 
npKMoTosHor0 pereaepaTopa, npHHaanemaT K THny rpa+iKoB, KMewqMxcfl no CHX nop 

TOJlbKO AJIH 06bIsHnX PeKynepaTHBHbIX TenJI006MeHHHKOB. 


